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CONTACT PROBLEM OF THE THEORY OF ELASTICITY FOR PRESTRESSED BODIES 

WITH CRACKS 

I. I. Kudish UDC 539:539.3 

Fatigue-test results often have a large scatter, which is generally related to a range 
of uncontrollable factors including the structure of an residual-stress distribution in the 
surface layers of the material, errors in assembly of the part, instability of the regime 
parameters and lubricant properties, etc. The effect of some of these factors on the per- 
formance of machine parts such as bearings was examined in [i]. There has been less study of 
the effect of residual stresses unavoidably created by some type of treatment (thermal, ther- 
mochemical, mechanical work-hardening, etc.) on the contact fatigue of materials. This topic 
has been investigated only by experimental method, and the available literature sources do 
not offer an unambiguous treatment of this subject. For example, in [2] (p. 227), the authors 
dispute that residual stresses have a significant effect on the fatigue of bearing steels. 
Several authors [3-7] hold that the retardation of fatigue is favorably influenced by compres- 
sive residual stresses and unfavorably influenced by tensile residual stresses. Other studies 
[8] indicate that compressive stresses are intolerable and that small tensile residual stress- 
es are useful. Thus, the question of the usefulness and measurement of the effect of residual 
stresses on fatigue fracture remains unanswered. 

Experimental studies were made in [9, i0] on the effect of shear stresses on contact 
fatigue. It was found that such stresses have an adverse effect on the fracture process. 

Here we propose a mechanical model for the combined effect of normal and shearing con- 
tact stresses on fracture on the one hand and, on the other hand, the effect of residual 
stresses in the surface layers on fracture. The problem is examined in an elastic formula- 
tion and is reduced to a system of integral and integrodifferential equations with additional 
conditions in the form of equalities and inequalities. A solution is obtained by asymptotic 
methods. We determine the distribution of contact stresses and the stress intensity factors 
at the crack: tips. An analysis is made of the effect of different levels of shearing contact 
stresses and residual stresses, as well as their sign (tensile or compressive), on the stress 
intensity factors. Numerical results are presented. 

Thus, on the basis of analysis of the proposed model, it is possible to comparatively 
evaluate the effect of the above-mentioned factors on contact fatigue. 
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Fig. 1 

!. Formulation of the Problem. We will examine a two-dimensional problem concerning 
the frictional interaction of a smooth die having a base z = f(x) with a prestressed elastic 
half-plane weakened by N rectilinear surface cracks. We will assume that friction on the 
boundary of the half-plane obeys Coulomb's law and that friction is absent on the edges of 
the crack. Preliminary (residual) stresses are created by compressive or tensile.forces of 
constant intensity p applied at infinity (Fig. i). Here, stresses [Ii] p(l - e-21an)/2, in- 
duced by the stresses p, will be applied to the edges of the n-th crack (~n is the angle be- 
tween the x-axes of the n-th local coordinate system and the main coordinate system. Partial 
or complete superposition of the crack edges is permitted. 

In dimensionless variables 

0 b t {x', "~' 0' 'o' o y,~}/ o, {q', P ,  Pk] = , a, c, x h ,  y,~ } = (x, % xi,  x~, xl~, 

t r s 

= {q, P., P,,}/qo, {xh, t'} = {x,~, t}/l,~, {vm ut~] = {vk, U.hI/V,~ 

~E' . .  , ~E' ~o t 4qo~h Lh 
]' (x') = -UP- ! (x), 5 ~ = ~ 0 ~ In  -~o' v~ = ~ . , )  6h = --bo 

the problem is reduced to a system of singular integral and integrodifferential equations 
with additional conditions in the form of equalities and inequalities [Ii] (the primes have 
been omitted) : 

c 

] ( x ) - - ) ~ f q ( t ) d t + 2 ~ q ( t ) l n l z l ~ _ t l d t  - .  ( 1 . 1 )  
a a 

N 1 
t ~" ' r 7~ ~ t)k j { v ~ ( t ) W k ( t ,  x ) - - u ' h ( t ) W ~ ( t ,  / ) }  dt = g~ q(a) = q(c) = O; 

h ~ l  - - i  

c 

fq(t)dt=@; 
a 

(1.2) 

wh (4 x) ~e -i:~ ~ -  Th ~" = , W h = R e W ~ ,  W ~ = I m W k ;  
T h -- x 

1 ~ N I 

- -  + ~ {v'h(t) U~(t~ x~) -- u~(t) V~h(4 x,d} dt = 
--I h = l  --I 

e 

= -p. (xn) - ; q (t) [D~ (t, x.) -- m~n (t~ x~)] dt -- ~p sin~ ~, 
a 

i N I 

7---F~ + 5h "h(t) V~n~(t,. x . ) + v h ( t ) U ~ . ( t , x . ) } d t =  
21 h=l -i 

ff 

a 

(i.3) 

(1.4) 

= Unk ---- Re  Unh, U,~k = I m  Unh, Un~ Rn~ + S,~k, Vnh ~ i (Rnh - -  S,~h), " 

Vnh = l l e  V~h, V~j~ I m  V~h, D~  R e  Dn,  D~ = - ~ ~" = 7" = I m  D~,  G,~ = Re  G~, G,~ = I m  Gn; (1.5) 

296 



--2io~n e ~czh I e 
/~.k (t, x,,) = (1 - 6,,~) l~',,~ (t, x . )  + ~ x,~ ------~ + ~ , -  r h 

1 - - e  -2~an 2e-2i~n (Xn - T~) ]1 (P~- + T~) 

- - +  

e -~an [ TI~---Th i e_2ian 
Sn~(t, x n ) =  (1 --6~h) Lna(t, x~)+ ~ L(xn__~k) ~ + R,~-- F~ - -  

K.k (t, x~) = r ~ - -  x + Th -- X.  '~ L~k (t, x~) = 
/ 

e - i~h[  t r h - X ~  _ -  ] - ~ 

[ ] D .  (t,  x . )  = -~ t - -  X,, t - -  X---~ ( t -  X~)  2 ' 

X n - -  T h ] 

(1.6) 

G~(t, x~) =-~ L~---nT + t - ~  (t-X~)~j; 
(1.7) 

= o r h  = 5kte iah + z~, z~ = x~ + iy~; X n ~nXne i~n + Zn, 

pn(x~) = O, v=(xn) > 0; p~(x~) ~ O, v~(xn) = 0; ( 1 . 8 )  
v n ( •  = u ~ ( •  = O. 

Here, x is the coordinate of a point of the contact region; a and c are the coordinates of 
the boundaries of the contact region; (Xk~ yk ~ and ~k are the coordinates of the center 
and the half-length of the k-th crack; x k is the coordinate of a point in the local coordinate 
system connected with the k-th crack; q = q(x) and Pk = Pk(Xk ) are the contact pressure and 
the stress acting on the edges of the k-th crack; v k Vk(X k) and u k = Uk(Xk) are the jumps 

in the normal and shear displacements of the edges of the k-th crack; f(x) is the form of the 
base of the die; I is the friction coefficient; 5 ~ is the convergence of the bodies; P is the 
force acting on the die; q0 and b 0 are the characteristic pressure and half-width of the con- 
tact region (q0b0 = 2v-iP); E' = E/(I - ~2) is the corrected elastic modulus of the material 
of the half-plane. 

Thus, with assigned constants Zk~ ~k' 6k (k = i, 2 ..... N), I, p and the function f(x), 
we need to use (1.1-1.8) to determine the constants a, c, and 5 ~ and the functions q(x), 
Vk(Xk), Uk(X k) and Pk(Xk) (k = i, 2 ..... N). Having obtained the solution of the problem, 
it is easy tlo calculate the stress intensity factors for normal rupture kzn• and shear k2n• 
in dimensionless form 

= 2 [v~(x~) + iu~(xn)]. (1 9) k ~ + i k ~  -T l im V t - - X n  

I t  s h o u l d  be n o t e d  t h a t  a t  p = 0, p r o b l e m  (1.1)-(1.8)  r e d u c e s  t o  t h e  p r o b l e m  s t u d i e d  in  
[12] in  whic:h p r e l i m i n a r y  s t r e s s e s  were  a b s e n t .  

The s o l u t i o n  o f  p r o b l e m  ( 1 . 1 ) - ( 1 . 8 )  is  a v e r y  c o m p l i c a t e d  t a s k  due t o  t h e  awkwardness  o f  
t h e  e q u a t i o n s  and t h e i r  k e r n e l s ,  t h e  m u t u a l  e f f e c t  o f  t h e  c o n t a c t  s t r e s s e s  and t h e  s t r e s s -  
s t r a i n  s t a t e  o f  t h e  m a t e r i a l  n e a r  t h e  c r a c k s ,  and t h e  need  t o  d e t e r m i n e  t h e  p r e v i o u s l y  unknown 
b o u n d a r i e s  o f  t h e  c o n t a c t  r e g i o n  and s u p e r p o s e d  s e c t i o n s  o f  t h e  c r a c k  e d g e s .  I t  i s  e v i d e n t l y  
p o s s i b l e  t o  :study t h i s  p r o b l e m  in  t h e  g e n e r a l  c a s e  o n l y  by n u m e r i c a l  m e t h o d s .  

2. As~nptotic Investigation of the Problem. Certain simplifications can be made in the 
case when all of the cracks are small compared to the size of the contact region, i.e., when 
50 = max 6 k << i. 

It is interesting to examine that structure of the crack system in the elastic half- 
plane for which the distance between any two cracks is considerably greater than their dimen- 
sions, i.e. 

0 0 
z~- -z~>>5  o Vn, k,n:/-=k. (2.1) 
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(The asymptotic relation g ~ h means that (gg)~/: ~ (h~) I/2 Obviously, if g ~ h, then g ~ ~. 
The asymptotic relations g >> h and g <~: h are similarly determined.) Since the system of sub- 
surface cracks belongs to the bottom half-plane, then Imzn~176 < 0 Vn, k. Thus, it fol- 
lows from (2.1) lhat 

0 --0 z . - - z h > > 5  0 Vn,  k , n ~ - k .  ( 2 . 2 )  

We w i l l  a l s o  assume t h a t  t h e  c r a c k s  in  t h e  e l a s t i c  h a l f - p l a n e  l i e  a t  d e p t h s  u n d e r  t h e  s u r -  
f a c e  which  a r e  c o n s i d e r a b l y  g r e a t e r  t h a n  t h e i r  d i m e n s i o n s :  

zo "-~o ~-- n>>~to Vn. (2.3) 

The following estimates are obviously a consequence of (2.1)-(2.3) 

Tk --  Xn >> 50, ]nh - -  Xn>>~oVn,  k ,n= /=k ;  ( 2 . 4 )  

Th -- Th >> ~0, X -- T h >> ~0Vk,  x. 

Having s o l v e d  Eqs.  ( 1 . 1 )  and ( 1 . 2 )  f o r  q ( x )  and i n t r o d u c i n g  t h e  new i n d e p e n d e n t  v a r i a b l e  
g = [2/(c--a)][x- (a--c)/2], we obtain [13] 

c o s  2 ~ ?  q (y) = qO (g, a, c) - ~ (~ -  a) • ( 2 . 5 )  

, ' h,t dr, 
X R(g) 6k Vh(T ) R( t ) ( t__g) ' - -Uh (T) R( t ) ( t - -g )  

h=l I - -  

B (g) = (i + g)l/~-v (I -- g)i/~+v; 

i 

. ' ,  , sin2~? cos~n? n .  , f /'(t) dt. tg~? ;~ ( 2 . 6 )  
q ~  ] tg)2(--(i--~--a) + ~[~--~) t[tg) a R ( t )( t --g) '  ~ ' ~ ' ;  

- - 1  

' f (t) dt t wrh.t(% t) dt W i (% t) dt 
t ' ' k,t d'r = O, ( 2 . 7 )  " R(t) ~ 5h vh 0:) • j ~[~) ui,('O B(t) 

- - I  h = l  - - I  - - i  - - I  

it s ] R(t) -~ . - -  5k v~ (~) R(t) uh('O R(O - d ' r = ~ .  
--I h:l --1 --i --I 

It should be noted that Wk,tr(~, t) = 8Wkr(~, t)/St, etc. Meanwhile, the above-indicated 
substitution of variables was made in the kernels Wkr and Wki in (2.5) and (2.7). 

Analyzing the structure of the kernels Wk, Unk, Vnk, Rnk, Snk, Knk, Lnk and D n from (1.3) 
and (1.5)-(1.7), we can conclude that these kernels can be represented as asymptotic series 
in 6 n and 6 k which are regular for all x and t: 

W .  (t, x) = ~ (5nt)JW~j (x), ( 2 . 8 )  
J ~ 0  
oo 

{Un,~ (t, x.), V.,, (t, x~)} = "~ (5~Xn) j (Sht) m {U,~i, im, V~jm}, 
j+m=o 
j, m>/O 

{D~ (t, x,,), G~ (t, xn)} = ~ (5~x~) j {D~ i (t), Gnj (t)}. 
5=0  

H ere ,  t h e  q u a n t i t i e s  Unkjm and Vnkjm do n o t  depend on 6 n,  6 k,  x n ,  t ,  b e in g  f u n c t i o n s  o f  t h e  
c o n s t a n t s  C~n, ak ,  Xn ~ yn ~ Xk~ and yk ~ A s i m i l a r  d e p e n d e n c e  e x i s t s  f o r  Wkj(X),  D k j ( t )  
and G k j ( t ) .  

Now l e t  us  p r o c e e d  t o  t h e  a s y m p t o t i c  s o l u t i o n  o f  s y s t e m  ( 2 . 5 ) - ( 2 . 7 ) ,  ( 1 . 3 ) - ( 1 . 8 )  a t  
6 0 << 1. We w i l l  s eek  i t s  s o l u t i o n  by t h e  method o f  r e g u l a r  p e r t u r b a t i o n s  [14] in  t h e  form 
of asymptotic expansions in powers of 60: 

{q, ~, ~, v,,, ~ ,  p~} E = 5o {q~, a~, % v.j, u~j, p.~}. ( 2 1 9 )  
j = o  

After completing the solution of the problem, we can determine the constant 6 ~ from (i.i). 
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Let us perform an asymptotic analysis of Eqs. (2.5)-(2.7) to establish the effect of the 
contact stresses and overstresses on the stress-strain state of the elastic material near the 
cracks. We therefore limit ourselves to obtaining a binomial asymptotic solution. The mu- 
tual effect of the cracks on each other and on the contact stresses is described by terms of 
the order 0(6o 2) and can be found in a similar manner. 

Using (2.8) and (2.9) and having equated the coefficients with identical powers of 60, 
we obtain 

1 /t'(t) dt 1 , 

J 
tf t dt 

qo (g) = qO (g,~ ao ' Co),: .1 n(t-----)- --0, n(t----- f-_n; (2.10) 
- - 1  - - 1  

qx(g) = O , a  1 =  c I = 0  . . . .  (2.11) 

It should be noted that the constants a 0 and c o are determined from the last two equations of 
(2.10). Then the function q0(g) is calculated. 

Now let us asymptotically analyze Eqs. (1.4)-(1.7). Having substituted the representa- 
tions (2.8) and (2.9) into these equations, we find that 

i t 1 r 
~ vno (t) 8t u~o (i) dt i ( 2 . 1 2 )  

= ~p,~o (x~) - -  ~C~oo,~ j 7 - 7< n~oo," 
t- X n 

--I --I 

i ;Y;'nl (t) dt r On 
t ,  x-----7- = ~P~'  ( ~ )  - . ~ c ~ 0 1  ~ 0  x~!: ( 2 . 1 3 )  

- -1  

1 

J t - x----~- = - ~,~o~ ~ xn . . .  ; 
- - I  

C~O 
r . i  t ~ 

cnkj + ~c~j = -~- q~ (t) [D~j (t) -- ~.6~j (t)] dt  + ( 2 . 14 )  
a o 

P e - - 2 i a n ~  + ~ o 8 j o - 5 - ( t  - -  , ,  k, ] = 0,. 1, 

Where 6ij is the Kronecker symbol. We used Eqs. (2.11). in deriving Eqs. (2.12) and (2.!3). 

Also, it is evident that the quantities Cnjk r and Cnjk I are independent of x n. 

For subsequent analysis of system (2.12)-(2.14), it is necessary to perform an asymptotic 
analysis of systems of alternative equalities and inequalities (1.8) at 6 o << i. Having used 
representations (2.9), we have 

g p . j  (x.) = 0, (x,,) > 0, 
5=o #=o 

j=o #=0 

( 2 . i 5 )  

We will assume that Vn0(Xn) > 0. Then it follows from the first condition of (2.15) at 
6 o << 1 that Pnj(Xn) = 0 Vj ~ 0, while the sign of Vnj(X n) at j t 1 does not affect the sat- 

isfaction of the second inequality in (2.15). Now let us suppose the opposite, i.e., that 
Vn0(X n) = 0. Then it is possible to realize one of two cases: a) pn0(Xn) < 0; b) pn0(Xn) = 
0. In case "a," Pn(Xn) < 0 for 60 << 1 outside the dependence on the values Pnj(Xn) at j > 

Here, from the last relation of (2.15) we find that Vnj(Xn) = 0 Vj ~ 0. In case "b," we 

find that Pn0(Xn) = 0 and Vn0(X n) = 0 at j ~ 1 is now made during the next approximation at 
6 o <~ I. The approximation is done in a similar manner. 

It follows from the last equations of (1.8) and (2.9) that 

v n k ( •  = unh(•  = 0 Vn~ k~ (2 .16  

Le t  us  examine t h e  problem of  t h e  s t r e s s - s t r a i n  s t a t e  o f  t h e  m a t e r i a l ,  nea r  c r a c k s  in t h e  
z e r o t h  a p p r o x i m a t i o n .  I t  i s  d e s c r i b e d  by Eqs. (2 .12 )  t o g e t h e r  w i t h  sys t em (2 .16 )  and 
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Pno(X,z) = O, vno(xn) > O; Pno(Xn) ~ O, vno(x,~) = O, ( 2 . 1 7 )  

We will assume that Vno(Xn) >0 ~x n ~ (-i, i). Then from (2.17) pno(Xn) = 0 V X n 
(-i, i), while from (2.12) we find [13] Vn0(Xn) = Cn00r~l - Xn 2 > 0. Thus, Cno0 r > 0. It is 

easy to see that at Cn00 r <_ 0, Eqs. (2.12) and (2.17) satisfy the functions Vn0(Xn) = 0, 

Pn0(Xn) = Cn00 r _< 0 Vxn~ (-i, i). From the second equation of (2.12) and (2.16) we obtain 

[13] Un0(X n) = Cn00i/i -Xn 2. Thus, the solution of problems (2.12), (2.16), (2.17) has the 
form 

v~,o (x,O = C~ooO (C~oo) ] / 1  --  x~, U,~o (x,) = c,~oo ]//1 - -  x~, ( 2 .18  ) 

p, o (x.) = o ( -  
where 0(-) is the Heaviside function. 

System (2.15), together with (2.13) and (2.14) is subsequently analyzed similarly at 
6o << 1 with allowance for the expressions for the sought functions of the previous approxima- 
tions. Here, the cracks have different configurations, depending on the values of the con- 
stants Cnjk r and Cnjki: completely open, partially closed, or completely closed. 

It follows from analysis of system (2.15) that at Cn00 r > 0 (see (2.18)) Vn0(X n) > 0 and 

Pnj(Xn) = 0, Xn~ (-i, i) u _> 0, while the sign of Vnj(X n) Vj _> 1 is immaterial. Thus, 

we obtain the following [13] from (2.13) by means of (2.16) at Cn00 r > 0: 

~n ~ (3 n ~ - r  
= = X n ,  (2.19) 

p . o  (xn) = o. 

At Cn00 r < 0, it follows from analysis of system (2.15) (see (2.18)) that Pn0(Xn) < 0, 

Vnj(X n) = 0, x n ~ (-i, i) Vj _> 0, while the sign of Pnj(Xn) at j > 1 is unimportant. Thus, 

from (2.13) at Cn00 r < 0 

~n 
v.1 (xn) = O, pnl (x.) = ~o e~olx,, ( 2 . 2 0 )  

w h i l e  t h e  f u n c t i o n  Unl(X n)  i s  d e t e r m i n e d  f rom ( 2 . 1 9 ) .  

We will examine the case Cn00 r = 0 when with zero approximation we have Vno(Xn) = Pno(Xn) = 0 

Vxn~ (--I, I) (see (2.18). In this case the summation in (2.15) begins at j = i. From 
(2.15) when Cn00 r = 0 we have an analog relationship (2.17). 

p=l(X=) = 0, v~l(x=)> 0; p=l(x~) ~< 0, v~(x=) = 0. ( 2 . 2 l )  

We will assume that Cn01 r > 0. Then on the basis of the form of the expression for 

Vnl(X n) in (2.19) obtained with the condition pi~.(x n) = 0V x n ~ (-i, i), and the form of 
the right side of the first equation of (2.13), we can assume that the segment (-i, i) oc- 
cupied by the crack is subdivided into segments (-i, bnl) and (bnl, i) on which the rela- 
tions Vnl(X n) = 0 and Vnl(Xn) > 0 are satisfied. Here, from (2.13), (2.16), and (2.21) for 

Vn1(Xn) , x n ~ (bnl, i) 

i" vnl ( t) dt ~n 
- -  C~olXn, ( 2 . 2 2 )  

t - -  x n ~ 6 0 
bn l  

v~l (bnO = v,l (1) = 0. 
( 2 . 2 3 )  

The c o n s t a n t  bn l  i s  unknown and i s  d e t e r m i n e d  f rom c o n d i t i o n s  ( 2 . 2 3 )  p n l ( b n l )  = 0,  [bnl  I < 1. 
Then from (2.2) we can easily determine the function Vnl(X n) [13], dependent on bnl. After 

doing so, we use (2.13) with x n ~ (-i, bnl) to determine the expression for pnl(Xn), which 
is also dependent on bnl. Then having solved Eq. (2.23), we obtain bnl = --1/3. As a result, 
Cn ~ r < 0 

-V3~n ~ t ) ~ t + 2 x ~  3 x $ 1 0 ( l + 2 x ~ - - 3 x ~ ) ,  v~ (x,) = ~ Cno~ (3x,~ + - -  ( 2 . 2 4 )  
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_ / % x  n + l 
96----~--Cnol 

We s i m i l a r l y  o b t a i n  e x p r e s s i o n s  f o r  Vnl(X n)  and p n l ( X n )  a t  Cnoo r = 0 and  Cnoz r < O: 

( 2 . 2 5 )  

] / / 3 5 n  r f 3x  n -  i . u 

r = 0 and r > 0 or r < 0, the function Unz(X n) It should be noted that at Cn00 Cn0~ Cn01 
is determined from (2.19). 

Study of the case Cn00 r = Cn01 r = 0 leads to the need to examine terms of the asymptotic 
expansions having the order 0(6o2), which is outside the scope of the present investigation. 

Using (1.9), (2.9), (2.18)-(2.20), (2.24) and (2.25), we can easily find expressions 

for the stress intensity factors 

i ~ ~ �9 k ~ = O ,  <~0; ( 2 . 2 6 )  k ~  = C~oo - -  y 5~C~ol + . . . ,  C.oo > O, C~oo 

[ . . . l - 7 _ _ 3 0 ( e ~ o l ) ] [ i i O ( 4 ~  1/~- r O, e~ol::fi:O; 

CnOO--b--~-OnCno1 ~ . . .  

3. Qualitative Analysis and Numerical Results~ We will limit ourselves to examination 
of the problem for a parabolic die f(x) = (x + d) 2, a = -b, c = b, where d and b are previ- 
ously unknown constants. Following [13], we obtain 

_ _  , ~ ~ 2 " - 1 / 2  qo (x) = cos ~7 (b 0 + x) 1/2-? (b O x) 1/2+?, b 0 ( l  - -  ? ) ~ ( 3 .  l ) 

do = - -  27bo ,  7 = t__ arctg -~-~. 

L e t  k~n ~177 and  k2n ~  be t h e  s t r e s s  i n t e n s i t y  f a c t o r s  i n  t h e  a b s e n c e  o f  o v e r s t r e s s e s  
(p  = 0 ) .  Then i n  t h e  p r e s e n c e  o f  o v e r s t r e s s e s  p and  a c o m p l e t e l y  c l o s e d  o r  c o m p l e t e l y  o p e n  
c r a c k ,  we w i l l  h a v e  ( s e e  ( 1 . 1 6 )  f r o m  [12]  and  ( 2 . 1 4 ) )  

. o  k ~ @ s i n  2 a n .  = + p = + ( 3 . 2 )  

It follows from (3.2) that the overstress p does not affect kln • and k2n • at ~n = 0, while 

it exerts the maximum effect at ~n = ~/2 or ~/4. 

Curves 1 and 2 in Figs. 2 and 3 were obtained in the absence of preliminary stresses 
(p = 0) for ~ = 0.i and 0.2, respectively, at (see Eq. (3.1)) 7 = 0.0159, b 0 = 1.0005, d o = 
-0.0318 and 7 = 0.0317, b 0 = 1.002, d o = -0.0635 (yn ~ = -0.2, ~n = ~/2 and 6n = 0.i). 

It follows from Fig. 2 that with an increase in ~ from 0.i to 0.2, the stress intensity 
factor for normal rupture kln + in the nonprestressed half-plane increases by one order. It 
should also be noted that kln+(Xn ~ reaches a maximum next to the boundary of the contact 
region on the side opposite the slip of the die. This is due to the fact that it is in this 
region of the material that tensile stresses initiated by shear stresses T in the contact 
are developed. The effect of the sign and the level of the prestresses in kln + is associated 
with an increase (tensile prestresses, p > 0) or a reduction (compressive prestresses, p < 
0) in the size of the zone of tensile stresses in the surface layer and the level of these 
stresses. In fact, it follows from (3.2) that the coefficient kln + does not decrease with an 
increase in the tensile prestresses (curves 3, 4 correspond to ~ = 0.i, 0.2 and p = 0.04, 

0.02) for any values of Xn ~ Meanwhile, if kln+(pl) > 0, then at P2 > Pl k~n+(P~) > k~n+(P~ ) 
(compare with curves 1 and 2). Similarly, it follows from (3.2) that k~n + does not increase 
for any Xn ~ with an increase in the compressive prestresses (curves 5, 6 correspond to ~ = 
0.i, 0.2 and p = -0.01, -0.03). Meanwhile, if k~n+(p~) > 0, then at P2 < P~ kzn+(P2) < 

k~n+(Pl). The dependences of k~n + on crack depth yn ~ presented in [15] for p = 0 shows that 

crack growth proves to be possible only in a thin surface layer of the material of a thickness 
on the order of b 0. It follows from (3.2) that with tensile prestresses, the thickness of 
this layer increased. Meanwhile, beginning with a certain value p > 0, the growth of cracks 
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is possible at any depth under the surface. In the case of compressive prestresses, the 
thickness of the layer decreases. 

Figure 3 shows the relation for the shear stress intensity factor k2n+. It should be 

noted that at a n = ~/2, we find from (3.2) that k2n • = k2n ~177 Thus, the curves in Fig. 3 

remain the same for any p. The value of k2n + is heavily influenced by the orientation of 

the crack [12], while it is influenced very slightly by the friction coefficient i. The re- 
lations k2n + = k2n+(Xn ~ reach extreme values next to the boundaries of the contact region. 

The behavior of k2n + in relation to yn ~ is different for different Xn ~ [15]. An analysis 

of Eqs. (2.26) shows that the coefficient k2n + differs significantly from its limiting 

value k2n+(Yn ~ = --co) = (p/2) sin 2~ n [see (3.2)] only in the thin surface layer of the mater- 
ial. It is evident that at 6 o << i, kln+(k2n +) and kln-(k2n-) are close. 

Such behavior of kln can be used to create conditions that will discourage crack growth. 

It follows from [15] that, as a rule, cracks grow in a direction which deviates slightly 
from the perpendicular to the surface of the half-plane. Taking into account the fact that 
the quantity kln is mostly responsible for crack growth [16], we find from (3.2) that at 
y < yn ~ small cracks (6 o << i) do not grow (will be closed) when p < P0 = -maxkln ~177 + kth 

(kth is the threshold value of k I. When the threshold value is exceeded, the crack begins 
to grow [16]). Having put kth = 0, we find from Fig. 2 that at y < -0.2, cracks do not grow if 
P = P0 = -0.016 when I = 0.I and p = P0 = -0.06 when i = 0.2. A further increase in the 
compressive prestresses above P0 leads to an increase in the crack resistance of layers of 
the material with y > -0.2 but does not affect the crack resistance of the underlying layers 
(Y i -0.2). Thus, with a sufficiently high level of preliminary compressive stresses, the 
competing mechanism of surface fracture becomes important. 

The results obtained here show that, in the elastic formulation, an increase in the 
friction coefficient and preliminary tensile stresses leads to intensification of the frac- 
ture process, while a reduction in the friction coefficient and an increase in preliminary 
compressive stresses leads to retardation of fracture. 

i. 

2. 

3. 

4. 
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WAVE PROPAGATION IN CRUCIFORM ROD SYSTEMS 

V. I. Erofeev, I. D. Konyukhova, and V. M. Rodyushkin UDC 534.1 

It is often important to know the kind of vibrations of structural elements in vibration 
diagnostics problems of elastic structures. Transformation of the kind of vibrations is ob- 
served during propagation of vibrations in complex bifurcated structures and an element re- 
mote from the vibrations source can perform vibrations different from those which the source 
supplies. 

Rods and plates are typical elements of elastic structures - consequently, a great deal 
of attention is usually paid to the study of vibrations propagating in rod and plate struc- 
tures [1-3]. However, as a rule, rods and plates are studied in engineering theory approxi- 
mations, which naturally constrains the frequency range of applicability of these models. 

Theoretical and experimental investigations of the generation of longitudinal and bend- 
ing waves through a cruciform connection of rods are carried out in this paper. The computa- 
tion is performed by a nonclassical rod model [4]. This permits studying the wave processes 
in an elastic structure not only at low frequencies but also in the frequency range for which 
the lengths of the propagated waves become commensurate with the rod transverse dimensions. 

i. A stiff cruciform connection of four rods is considered (Fig. i). The propagation 
of longitudinal and bending waves in each of the rods is described by equations of the re- 
fined theory [4] 

~2uJ ~~ 2 04uj 
p~S~. .~  E jS j  Ox.---~- i - -  p~vsIos ~-i.~2 = O, oxj o~ 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
153-156, March-April, 1987. Original article submitted February 6, 1986. 
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